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Accelerated storage tests on pharmaceutical products: 
effect of error structure of assay and errors 

in recorded temperacure 
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The likely error structure for accelerated shelf-life studies is discussed. How to fit the 
Arrhenius relationship in the presence of this structure is shown and it is concluded that 
test potencies between 20n, and 50"b are likely to provide most information. The effect of 
temperature errors on the estimation of shelf-life is also considered. 

~ ~ e l e r a t e d  storage tests are used to predict the 
s&lf-life of pharmaceutical products. The product is 
$tored, usually in sealed ampoules, a t  two or more 
elevated temperatures. These are sampled at  suitable 
time intervals and their potency determined. Clark & 
Hudson (1968) and Kirkwood (1977) described the 
conduct of the test and the statistical analysis of the 
results. The statistical analysis involves postulating a 
model to represent the deterioration rates a t  the 
various temperatures, fitting this model to  the data 
usually by the method of least squares, verifying the 
model and using it to extrapolate to ambient tem- 
peratures to estimate the shelf-life. 

It appears that insufficient attention has been paid 
to the error structure of the assay methods when 
fitting the model, and also, there is very little precise 
information on the possible effects of errors in the 
measurement of the temperatures of the storage ovens 
on the cstimation of the shelf-life. These two ques- 
tions are now examined statistically. 

Model 
For most drugs tested, the deterioration is first 
order, that is 

logy = log yo -K(T)t . . . .  " ( 1 )  

where y is the potency at  time t, yo the initial potency 
a d  K(T) the rate of deterioration a t  temperature T. 
The rate K(T) is related to  the temperature T, 
measured in degrees absolute, by the Arrhenius 
Law : 

K(T) = a e-E/RT . . . .  . .  ' .  (2 )  

where 'a' is the frequency factor, E the energy of 
activation and R the gas constant. 

Correspondence. 

A more useful form for K(T) to use statistically 
is 

K(T) : e*-B/T . . . .  . .  ' .  (3) 

where A and B are parameters. 
An ampoule stored at  an elevated temperature is 

usually assayed side-by-side with an ampoule stored 
a t  a low temperature where no appreciable deteriora- 
tion occurs. The latter is regarded as a standard and 
the potency of the sample is expressed as a per cent 
or a proportion of the standard. If y is expressed as  a 
proportion the model becomes: 

. .  . . (4) 

Capital Y is used throughout this paper to denote 
the log of the potency expressed as a proportion of 
the standard. 

Y -= log y = -eA-I%/Tf , , 

Error strirctrrre of the ussuy 
Laboratory experience suggests that the standard 
error of a potency determination when expressed as  
a percent of the potency, or equivalently the standard 
error of log y, increases with decreasing potency. 
There d o  not appear to be any published data to  
quantify this, but it is shown in this section that such 
a result can be expected. It is necessary to take this 
into account when estimating the parameters of the 
model. It is reasonable to postulate three sources of 
error: 

(i) those which give rise to  a standard error that is 
proportional to  the potency, e.g. dilution errors. 
Here the standard error is denoted by go. 

(ii) those which give rise to a standard error that is 
proportional to  the amount of deterioration, 
e.g. temperature variations within the storage 
areas. Here the standard error is denoted ul. 
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(iii) those which give rise to a standard error that is 
independent of the potency, e.g. crrors arising 
in measuring a peak height in a chromato- 
graphy trace. Here the standard error is 
denoted by u2. .~ 

These sources are independent and may be combined 
giving: 
Variance of potency = y2a02 + ( Y ~ - Y ) ~ ~ ~ ~ + Y O ~ ~ ~ ~ ( ~ )  
Variance of log potency = uo2 + ( Y ~ I Y - ~ ) ~ ~ ~ ~  + 
(Y olY)2u22 . .  . .  . .  . .  ' .  (6) 
This equation is very flexible and covers all situations 
between a constant variance for y (when uo =ul 
= 0)  to a constant variance for log y (when u1 = 

i72 = 0). 
The formula can be simplified to: 

u o 2  + (Yo/Y)2u22 . .  . .  . .  ' .  (7) 
by assuming that u1 is negligible or absorbed in uo 
and u2. 
An alternative basis for the derivation of the error 
structure of the assay is the following: 

Both the sample and the standard ampoules are 
analysed side-by-side i n  each assay, and the measure- 
ment on the latter, denoted by y, is expressed as a 
proportion (or percentage) of the measurement on 
the standard, denoted by yo. We assume that both 
the sample being assayed and the standard ampoules 
are given identical treatment, e.g. there is no 
differential dilution. I f  now we denote the standard 
deviations from the three sources of variation when 
applied to the measurement on each of standard and 
sample by uA,u'B,uC respectively, i t  follows that: 

Variance of yo = (u2i2 -1.- cw2)yo2 . . . . (8) 
Variance of y = a.\2y2 - t -  ar12(yo - Y ) ~  -1- 0 2 y O 2  
Therefore: Variance of log potency = Variance of 
log yo + Variance of log y = 

(2UA2 + 02) -t aB2(Yo/Y -112 + n,"(yolY)Z , (9)  

This is of the same general form as (6) except that the 
0's have a different interpretation and oo2 az2 in 

OB is likely to be small and can be considered as 
being absorbed in uA and uc 
Substituting R for o2/(2uAL + uC2), (9) then be- 
comes : 

( 2 f f 2 A  + UC') (1 + R(YO/Y)~) . . . .  . . (10) 

(6). 

R must be less than or equal to 1: the extreme 
situation R = 0 occurs when uc = 0. For the other 
extreme when UA = 0, the formulae reduces to 
i72 (1 + (y , /~)~) .  If u 2  is appreciable and considered 
absorbed in and u2 ,  or if the standard is repli- 
cated, R could then exceed unity. 

Formula (10) is structurally more meaningful 
than (7), but from the point of view of representing 
the expected increase in the standard deviation of log 
potency for decreasing potency the formula are 
equivalent. Table 1 shows this relationship numeric, 
ally for formula (7) where R is equal to g22/oo2. The 
standard error is expressed as a percent of the 
potency, and the standard error of the maximum 
potency is made equal to 1 %. 

Table 1. Relative standard error as Percent of Potency. 

R =  
I 0.5 0.25 R+co % 

Potency 2 
100 1.0 1.0 1.0 1.0 1.0 
80 1.2 1.1 1.1 1.1 1.3 
50 1.7 1.6 1.4 1.3 2.0 
30 2.8 2.5 2.1 1.7 3.3 
20 4.1 3.6 2.9 2.4 5.0 

8.2 7.1 6.1 4.6 10.0 10 

Relative standard error = (Relative standard errors at 

The general behaviour of the various situations 
depicted in Table 1 is similar in that down to 50% 
potency there is a moderate increase in the standard 
error of log potency, but for lower potencies the 
increase is rapid. The rates of increase are larger for 
larger R. There is an upper limit to this rate of 
increase when go == 0 in equation (7), that is, when 
R-. m. 

It appears that the increases shown in Table 1 are 
of the magnitudes which are expected to occur in 
practice. The value of 1 % for 100% potency may be 
somewhat optimistic and a value of 3% can occur, 
although 2 %  may be more likely. The figures of 
Table 1 should be multiplied by whatever standard 
error is expected for 100% potency. In the above we 
assumed no differential dilution which is the usual 
situation. However, in some cases the standard is 
diluted to give roughly the same concentration as the 
sample. If, in addition, both sample and standard are 
diluted so that roughly the same response is obtained 
throughout the range of potencies then the standard 
error will be proportional to the potency. The 
standard error of log potency will be constant except 
for any error relating to the amount of deterioration 
i.e. ul. This is because dilution errors will be a con- 
sistent proportion of the dilution whilst measme- 
ment errors and measurement will both be fairly 
constant at all potencies. Some test samples may 
have less potency before dilution than the others 
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This requires an estimate of K(T) for each tempera- 
ture. Denote a given temperature by the suffix j ,  then 
K(T,) is obtained by fitting 

Y = logy  -K(Tj) t. . . . .  . . (14) 

1001 

95 a5 15 65 55 15 35 25 15 
'lo Potency  

FIG. 1. Relationship between potency and efficiency. 

after. In this case the u2 error will be constant in the 
potency scale so the standard error of log potency 
will increase with decreasing potency. 

Fittitlg the t?lOdP/ 

The model is 

log y =- -exp (A-B/T).t . . . .  . .  ( 1 1 )  

where the potency y is expressed as a proportion. 
The potency determinations are log normal, and it  
follows that the appropriate method of fitting is by 
least squares. The model is non-linear and the 
procedure for minimizing the sum of squares has to 
be an iterative one. Any of the recognized niinimiza- 
tion procedures may be used, provided: 
(i) the model is reparameterized as follons: 

where A is a v,eighted mean of I/T. This is the usual 
reparameterization used for the Arrhcnius model as 
described previously by Box ( I  960). 
(ii) each observation is weighted by the inverse of 

the variance of the log potency as given by the 
error structure formula for  the assay. 

(iii) good approximate values of the parameters are 
used as starting values. 

The last of these is important and a simple method 
exists for the purpose. The method is to fit  

Where K(T) is the deterioration rate for temperature 
T. 

to the observations of the jth temperature by 
weighted least squares. This gives: 

K(Tj) 2 CwjiYjitji/Cwjitji' . . . .  . . (15) 
where the suffix ji denotes the ith observation for 
temperature j and w,i its weight. 

In order to fit (13)  we need the weight to be atta- 
ched to each log K(Tj). This is derived as follows: 
Variance of K(T~)  aZ/Cw-.t 11 J l -  .* 

where cr2 is the combined residual variance over all 
the temperatures. Thesc are standard statistical pro- 
cedures. The variance of log K(Ti) is obtained by 
dividing the variance of K(Ti) by (K(TJ))~:  Thus 

variance of log K(Tj) - u2/xwj,tj,2 (K(Tj))2 (16) 
This may be expressed in another form by using the 
relationship 
Yji ~- K(Ti)tj, 
Substituting for K(Tj) i n  (16) gives 

variance of log K(T~)  ~ cr?,EiwjiYj12 . . (17) 

The weight to be attached to log K(Tj)  is the inverse 
of its variance, that is 

w, . zw..y..2/ 1, J ,  u2 . . . .  . .  . . (18) 
I 

Since only relative weights arc needed, we may 
drop the divisor u2. This formula is of considerable 
interest because it gives the relative information 
supplied by each assay. T ~ L I S  an assay with a potency 
of y, expressed as a proportion, supplies relative 
information given by 
w WV. 
where Y ~ log y. 
The relative values of W for the error structures given 
in Table 1 are tabulated in Table 2 for a wide range of 
potencies. The maximum value for each structure has 
been equated to 100: the entries then give the percent 
efficiency of each potency. Thc graphs for the various 
structures are similar: the efficiencies rise from low 
values for high potencies to a maximum around 
30:{ potency. The maximum is fairly flat giving a 
wide range from 20% to SO:< potency for near 
optimum values. This has an important bearing on  
the design of accelerated storage tests. As far as  
practicable one should aim for potencies within this 
near optimum range. I t  is clear that potencies above 
60;; should be avoided if possible. There may be 
additional reasons for avoiding low potencies. 
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Further considerations in .fitting the model 
I f h  is taken to beX(Wi/Ti)/CWi in (13). the equation 
reduces to 
log K(T) = mean log K(T) - B( 1 /T ~~~ h)  (1 9) 
where mean log K(T) = XWi log K(Ti)/X Wi 
and A' = mean log K(T). 

The values of A' and B derived in this way give 
good starting values for the application of a non- 
linear estimation procedure. We have found that a 
simple Gauss procedure, commonly referred to  as 
Gauss-Newton procedure, when applied to  the data 

Table 2. % Efficiency of a potency determination for 
various assay error structures derived from formula (7). 

. . 

R -  
1 

90 4.7 4.1 
80 18.8 15.7 
I 0  39.1 34.1 
65 50.0 45.5 
60 62.5 57.0 
55 13.4 68.6 
50 82.8 78.3 
45 92.2 88.4 
40 96.9 95.9 
35 100.0 99.2 
30 96.9 99.2 
25 90.6 93.4 
20 79.7 8 2 4  
15 6 2 3  65.3 

% 
Potency 2 

0 2 2 ! 5 " 2  

0.5 0.25 5" -= 0 
3.1 2.2 6.7 

12.6 9.3 23.7 
28.4 21.9 45.9 
38.3 30.3 57.7 
49.2 40.0 69.6 
60.7 50.8 79.9 
72.2 62.4 88.8 
82.8 74.1 95.5 
90.4 85.1 99.2 
97.7 94.1 99.9 
99.6 99.7 96.2 
96.2 99.6 88.8 
86.4 92.8 77.0 
69.8 77.2 60.0 

The entries for R = I and 0.5 for formula (7) are 
plotted in Fig. I .  

of many tests, converges in 3 to 5 iterations. even 
when the model was not a good fit. We have also 
found that the contours of the likelihood surface 
over a wide range were near ellipses and the ridge 
was approximately linear. 

This means that for the cases examined the para- 
meters had only a small degree of non-linearity and 
their distributions could be assumed approximately 
normal. Log K(T), being a linear function of the 
parameters A' and B, can then also be assumed to be 
approximately normal. This would follow anyway if 
the standard error of K(T) is small, say less than 20% 
of K(T) for all K(T)'s. In practice, this restriction can 
be relaxed for the smaller K(T). These considerations 
lead to the conclusion that the starting values derived 
by the above procedure give satisfactory estimates of 
A' and B in most situations without the need to  
follow with a non-linear minimization procedure. 
This conclusion is used in the next section. 

Efect of errors in the measiirement of temperature 
The measurement of the temperature of the ovens is 
subject to  error, and it is believed that this could 

easily amount to a standard deviation of 0.1 "C. It is 
necessary to find out what effect this has on the 
estimation of the shelf-life. Defining the shelf-life as 
the time taken to lose 10% of potency at  ambient 
temperature the log shelf life is given by 

log shelf life 7 log (-log 0.9) - A' + B(l/T,-A) 
(20) 

where To is the ambient temperature in degrees 
absolute. A' and B are approximately normal and 
therefore the estimate of log shelf life is  also approxi. 
mately normal. This was confirmed by Booth (1979) 
from extensive simulations. 

Equation (13) can be fitted to  any set of suitable 
data, and A' and B can be expressed as joint func. 
tions of the temperatures. The standard error of log 
shelf-life can thus be derived from the differentials of 
log shelf life with respect to  each temperature as 
follows : 

DTI = 
?(log shelf life) 

hTi 

Standard error of log shelf life = \'x(DT# multi- 
plied by the standard error of temperature. 

The values of Ti are substituted after differentiation, 
When the procedure is programmed for a computer, 
the differentiation i s  carried out step-wise at inter- 
mediate stages. 

The above general procedure was used in the fol- 
lowing empirical method to find the standard 
deviations of the log shelf life due to temperature 
errors in a variety of situations, and compared with 
the relative standard deviation due to assay errors. 

A standard deviation of 0.1 "C was assumed for 
the temperature. For the assay error, formula (7) 
was used takingn, ~ 0.0082andu2 =: 0.0057, thatis, 
R 0.5 and standard error of I00 "/, potency is 1 %. 
Starting with a value for the log frequency factor A 
and a value for B-the activation cnergy/gas Con- 
stant, for a known compound, four consecutive 
temperatures arc chosen in the set SO, 60, 70, 80,% 
100 "C best suited for the compound. The design is 
one assay for each temperature taken at  the times 
for which the expected potency is 30%. A time limit 
of 50 days is imposed which means that for Some 
temperatures the potency of 30% is not reached, in 
which case the expected potency a t  50 days is taken. 
The above general procedure can then be applied to 
the expected potencies a t  the specified s a m P l a  
times. This was carried out for a number Of know 
drugs and the results are given in Table 3. The 
ambient temperature for the estimation of shelf1'' 
was taken to  be 23 "C. 
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Table 3. Effect of temperature errors and assay error. 
on the accuracy of the e\timate of 5helf life at 1 3  ' C ,  

Standard error o f  log shelf life 
A due to 

fre- Shelf assay errors* 
quency life temp. errorb = 0.008165. 

do. factor B 7 E'R (days) D ~~ 0 1 ' C  o1 = 0.005774 
1 .- 

I 
2 
3 
4 
5 
6 
7 
8 
9 

10 
I I  
12 
13 
14 
15 
16 

33.95 
21.33 
24.09 
21.57 
33 67 
19.18 
15.31 
27.A0 
34.16 
33-87 
19.11 
25.93 
35.89 
33.80 
14.94 
20.01 

13297 
8455 
9059 

13286 
8475 
677 I 
9864 

1 I978 
13286 
8455 
9764 

13035 
131x6 
6694 
7851 

9703 

6142 
146 
71 

7788 
7823 
I342 
203 

39 
5R 

6413 
1345 

I22 
364 

4895 
227 

71 

0 03x6 

o 0437 

0 0229 
0 0180 

0 041 7 
0 0283 
0 0184 
o 0196  
0 0238 
0 0390 

0 0261 

0 028 3 
0 0194 

0 0368 
0 0184 
0 0185 

0 0760 
0 05x5 
0 0386 
0 2545 
0 0827 
0 1126 
0 0670 
0 0379 

0 0772 
0 1134 
0 0419 
0 0443 
0 0717 

0 0479 

0 0379 

0 0708 - 
R = 0.5,  s .d .  o f  Y o  0.01 which is equivalent to a standard error 

flhe figures in brackets are the equivalent standard deviations 
of I % for yo. 

,,pressed as per cent of shelf-life.) 

The contribution of temperature errors to  the shelf 
life is around 2-4x. These cannot be considered 
serious particularly when the standard errors of 
3 4 %  apply to very long shelf lives for which the 
deterioration rates at the elevated temperatures are 
not sufficient to give expected potencies of .iOO/;; 
within the time limit of the test. 

Booth (1979) applying somewhat different methods 
on a different but related model, reached similar 
conclusions on the effect of temperature crrors. 

Replication will reduce the standard error due to 
sampling and assay errors but will not affect the 
standard error due to errors in temperature. There i5 

therefore an economic limit to the replication. For 
example, four replications would halve the effect of 
assay error. I n  most cases the temperature error 
would then predominate and little would be gained 
by further replication. 

It is evident from the above data that assay and 
temperature errors can make an important contribu- 
tion to the error associated with a shelf life prediction 
from an accelerated stability study. After considera- 
tion of the Arrhenius equation, this is not unexpected 
but we have endeavoured to show that good experi- 
mental design can significantly minimize the potential 
m o r s  involved and also possibly economize in time. 
For example, once the order of reaction has been 
established, preliminary experimentation would 
determine the time for almost 55 % decomposition to 
occur a t  the temperatures chosen for the study. If 
h P l e s  were monitored between 55 and 75 % decom- 
Position instead of between 10 and 75 % decomposi- 
tion, which is usual, the number of samples 

necessary to assay may be significantly reduced due 
to the increase in efficiency of the assay at this level 
of potency. It is appreciated that all drugs would 
not fit this design since it is not always practical to 
obtain 40 "/, decomposition over a reasonable time 
period particiilarly at one or more of the lower 
temperatures employed. However, its value at  the 
higher temperatures usually employed cannot be 
ignored. 

It has been shown that with low potencies (see 
Table I )  the assay error increases and it may be 
advisable not to exceed 7 5 %  decomposition. It is 
unlikely that errors other than those discussed would 
interfere a t  this level of potency. At still lower 
potencies it is feasible that other chemical reactions 
may become more significant and produce products 
which the assay method may not be capable of 
differentiating from the parent drug. 

Table 3 shows that temperature errors of the 
order 10 .1  "C d o  not seriously affect shelf life 
predictions. Larger errors e.g. &4 "C usually result 
in  non-linearity of the Arrhenius regression. If this 
type of error is suspected it becomes increasingly 
difficult to decide if the system under study obeys 
the Arrhenius law. Inaccuracy in monitoring 
temperature is only going to be a small contribution 
to the overall temperature error. The major contribu- 
tion will come from the sensitivity of the oven 
thermostat, the fall in temperature experienced when 
the oven door is opened to remove samples and the 
time taken to return to the temperature employed, 
and non-uniform temperature distribution through 
samples. The use of a water bath to store the samples 
may eliminate some of the problems but may also 
introduce others. It may be concluded however that 
the design of accelerated storage tests can be im- 
proved by a statistical consideration of some of the 
variables involved. 
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